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INTRODUCTION

Recently, V. A. Baskakov [l] introduced a class of linear operators on
Cla, b] that is more general than positive operators, and obtained various
convergence theorems of Korovkin type. The theorems in [1] are of three
types: (1) convergence of a bounded sequence of operators from his class to
the identity on a certain test set implies the convergence for all fin C[a, b];
(2) convergence of a sequence of operators from his class to the /th-derivative
on the test set implies the same sort of convergence for all /€ C*[a, b]; and
(3) theorems limiting the degree of convergence of sequences of polynomial
valued operators belonging to his class.

In the present paper, we shall combine the idea of Baskakov with the
concept of finite oscillation kernels to obtain a wider class of operators and
the corresponding theorems. To this end, we shall refer to many of the results
by M. J. Marsden and the author [4]; particularly, those results dealing with
disconjugate differential equations.

Let L,,3 = D™y 1 Z;'l:l ai(t) D=y = 0, D == djdt, be a linear differential
equation with continuous coefficients, i.c., a; € C(a, ). We suppose that

disconjugate on [o, 8]. In such a case, there are functions ¢; € C™+1-i(a, B),
&; > 0 on (a, B) such that L,, can be factored as

L, = w(t)D,, - - D,Dy (1.1)

where D;y = D(p/¢;) and w == /&, - & - - &,.. The functions

&, ..., £, are only integrable on proper subintervals [«, ¢] of [«, 8], and the

set of functions vy ,..., u,, defined by D,;D;_; ... Dyut;oy = &4 » DFuj () = 0

fork = 0,...,j — 1, is called a fundamental principal system for L,, on [«, 5].
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Moreover, a fundamental principal system on [«, 8] is unique up to multi-
plication by positive constants. In the discussion that follows, we adopt
the notation,

@y =D/Dy 4 Dy I < m, (1.2)

where (1.2) is obtained from the decomposition in (1.1). For the above
facts and a more complete discussion of disconjugate equations see Willett
[5] and the references therein.

Let L,y = 0 be a disconjugate equation on [«, B] with [a, b] C («, B).
We define a class of linear operators ,,(L; : [«, 8]) on the space X to itself
by:

() Ae Ly [ B]) implies ALf; x] = [, f(r) K(x, t) dt

(i) for each x €(a, b), and for the function

ft &ty _[tk Eralti-r) JJZ §i(t) K(x, tyydty - dty, a <t <x,
S)= (7, S . (1.3)
[Te) [ ecatn [ &) KGetydn - diy, x <1< b,

there is a partition of [a, b] into at most m + 1 intervals [y , ..o, g0 s
(r == r(x)), such that S,(£)(x — 1)* is of one sign (>0 or <0) on each I, ,,
and S (f)(x — t)* alternates in sign on these intervals. The functions &,
j = 1,.., k in Eq. (1.3) correspond to the decomposition of L, on [«, 8] as
described above.

The space X in the above definition may be taken as Clq, b], or, as a
Banach space of Lebesgue measurable functions on [a, 6] which satisfies
(a) C™**a, b]C X and is dense, (b) X C L'a, b], ie., I, < M| flx,
/€ X and M an absolute constant, and (c) | g | << | f],f€ X implies g € X and
fgillx <X C|fllxy where C is an absolute constant. In the first case,
K(x, t) dt = do,(t) where a,(t) is of bounded variation on [q, b], and in the
latter case, K(x, t) is an [a, b] X [a, b] Lebesgue measurable function and
condition (ii) is satisfied for almost all x.

The class of V. A. Baskakov [1] is covered by taking m == 0, k even, and
L* to be ordinary differentiation k-times which is disconjugate on the interval
[0, ) (i.e., the weight functions &, = I).

In the sequel, if « is not a singular point for the disconjugate equations
involved, then @ = « may be included in the definition and theorems. Further,
we shall assume k& = 1, since the case k == 0 corresponds to the class
;. of [4].
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2. THE MAIN THEOREMS

Suppose that L,,., y == 0is a disconjugate equation on [«, f], [a, 5] C (&, B),
with a fundamental principal system on [«, 8] given by (¢, ,..., v,,.1). Let
Ly -+ 0 be the disconjugate equation with fundamental principal system
(uy ,..., ) on [, B] which defines the class %,(L;, : [, B]). Forj == 1,..., m + 1,
we define u;,,; as

ol ~T Tz CTh—1 . A

U (t) = §1(f)j &x(1) J J §l7i) J vir) dryedry, (2.1)
where the &; are as in (1.3). Clearly, %*u; - v;.

Tueorem 1. Suppose that {A,} C S (L, [a, B]) on X. Let L, .,y =0
be disconjugate on (o, 8], and suppose (ty ,.... Uy, , Upoq yeers Upimo1) Qre as above.
Then, the conditions || A, |y << M < -0, and || AJu; 1 x] — u(x)||y — 0
as n-> oo for i =1,2,..m-+k 1, imply | AL x] — f(x)ly =0 as
n — oo for each fe X.

If the operators L,, ., and £, correspond to ordinary differentiation (the
weights &, in (1.3) and (2.1) taken to be identically 1), then we obtain the
following.

CorOLLARY 1. [f{A4,} C S(D*: [0, ) on X, then | A, ljy == M < +x
and || Auft: x] — x|y =0 as n— o for j=0,1,.,m+ k, imply
[ AuLf: x] — f()ly — O for all fe X.

For the class 7,,(L;, : [«, B]), we can give an analogous theorem concerning
convergence to certain ‘“‘generalized” derivatives given by Eq. (1.2).
THEOREM 2. Let {4} C S (L, [, B on X, and (uy ..., g o Uiq 3eees Upiomsr)
be as above. Then the convergence
[ Anlt; 2 X] = GuX)l[y >0, i =l.,m+k -1,
1 < k,implies || A, f: x] — Z'f(x)|.x — O for all fe X with Z*+7fe Cla, b].

In the case of polynomial valued operators of class .%,,(L;. : [, B]) on X, we
can give an estimate on the degree of convergence. Let P, denote the class
of polynomials of degree not exceeding #.

THEOREM 3. Suppose that (i) {A,} C S(L;, : [, B) on X, (ii) A,feP,
for each fe X, and () L,y and (Uy .o Uy, Upyq seees Upagyy1) Gre as in
Theorem 1. Then at least one of the sequences

et L Ay x] —ud Xy, = Leam k1

does not converge to zero.
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As in [4], a more careful look at the clustering nature of the sign change
points of S,(t)(x — t)* yields a stronger result. Let fy 4 ..., t,0. DE the
endpoints of the intervals I, . ,,..., [,41,0,» contained in the interior of
[a, b]. Let j, represent the essential number of sign changes for the sequence
{A4,}, i.e., j, is the smallest number j, for which there exists 6 > 0 and n,
such that for each x (or x a.e.), and each n > n,, at most j, of the points
t; ..» liec in any interval of length 6.

THEOREM 4. If, in addition to the assumptions of Theorem 3, {A,} has j,
essential sign changes, then at least one of the sequences

”jOk‘Lk H An[uf : x] - uj(x)w/‘( s ] = 1’"" m - k 7:’” 1’

does not converge 1o zero.

A quantitative result corresponding to the convergence in Theorem 2
can also be obtained.

THEOREM 5. Suppose that (i) {A,} C % (L, : [, B]) on X, (ii) 4,f€P,
Jor each fe X, and (iii) L,y and (Uy .y Uy, Ugyy 5ens Upimay) @re as above. If
A, has j, essential sign changes, then at least one of the sequences

WO Ay X — Pu Oy, j=Le.m k41,

I < k, does not converge to zero.

Finally, as a corollary to the proof of Theorem 1, we can obtain a quanti-
tative statement in the other direction for a sequence of operators
{4, C S(Ly 2 [, B]) on Cla, b].

THEOREM 6. Let fe Cla, b, {A4,} C %.(Ly: [, B]) on Cla, b],
Iw? An HC[a,b] < Ml < -0, (li’ld L’l‘ll—'rl and (ul seees Up o Upyq 5oy uk+m+1) as in
Theorem 1. If

Al 2 x] — (e < Moy,
i=1l.,k+m-+1 06,0, then
H An[f x] - f(x)”C[a,b] \<\ AM:;U’nn—Fk + ‘lewmrrk(f, Un),

where w,, . {f, 0,) is the (m <+ k)th modulus of smoothness.
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3. THE INTERPOLATING POLYNOMIALS

Let fe Ct¥[a, b]. As was established in [4], we can interpolate such a
function by ‘“polynomials” comprised of elements from a fundamental
principal system. In this section, we shall set up the interpolating system
and obtain boundedness of its coefficients.

Let #; = ¢ ... i == 1., r, v <2 m, be the endpoints of the intervals
Livnses Loy o interior to [a, b]. We interpolate Z*f at the points ¢, ,..., ¢,
using the fundamental principal system (vy,..., v,4q) of the disconjugate
equation L,,.;y = 0 on [«, 8]. Indeed, let
cv, G

e vy
)= (z1 et t )/(t] t,) = (/D). (-1
(see [4, Eq. 3.6]) where the brackets represents the determinant of the matrix

whose (7, j)-entry is the ith function evaluated at the jth point.
Note that J(¢) may be written in the form

A1 0 A 0
J() = (“ ‘5“‘)/(*“‘{“*)- (3.2)
B C B D

where
£ 1(x) 0
3 a(X) ¢ o X) 0 B’

A=1 . - werm e |
wp(x)  Zu(x) é:k(Y)

and B’ = [Z7 Yy, (x)] (j == Lo, ki == 1,..,r).
Integrating J(¢) against the weights £, . we obtain

R(t) = &,(1) ' fz(Tl)f ElTi1) [ J() dry. - dry (3.3)

v
I
|

A 01 3 A+ O
RERLEP /(- )
B i C B 1D
where C = [C": V7], Ud#) = [u(t) ... uplt) vpiq(t) ...ty (2) f(t)] and
Vi = [o(2) ... 0(1) 2 (1)].
Observe that R(t) == f(t) — p,..(t), where

E+m+1

Pent) = Y aix, n) uft) (3.4)

j=1
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and that p, ,(¢) interpolates f and its generalized derivatives of order up to
k —1latx, ie, @ip, (x) = Zf(x),j =0,1,.... k — 1.
We shall need the coeficients a,(x, #) to be uniformly bounded. Now,

/Ax()~/(A!0)
.___\ _______ ‘A___
(BIC')J« B i D

where ( ); denotes that the jth row has been removed. Using the triangular
nature of A and an inductive procedure, we can write a;(x, n) as a linear
combination of determinants of the form

vy A1 O
fouerl )1
Ve ip

where ZU(x) = [Pu; (%) ... Ziu,(x) 2 (x)], 0 << 7 < k — 1, which in
turn are linear combinations of

(171 v DY vy L«r)/(vl L’,) ] (3.5)

1‘1 e fj-1 rj tj“l “es rr tl ven t’r

‘ a,-(x, n)l ==

The last determinants are uniformly bounded by Lemma 3.2 of [4]. The
coefficients in the above linear combinations involve products (in various
combinations) of the function £,(x), 1/£,(x), 2'f (x), and Ziu,(x), all of which
are uniformly bounded on the interval [a, b].

The function J(¢) also can be written as

s =[G S G )
= Zo.n(t) G, (1)

According to Lemma 3.2 of [4], | g,..()] is bounded uniformly in z, x, .
Further, we note that

410 A1 0
qm,n(’) = ("_—{——-—)/(_~#il___)
B, { C, B’ I D

where B, and C, are found from B and C, respectively, by replacing f by
Uptrsr - ThUS,

RO =40 [ &) [ 6 [T gustmy dr e, G
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is found from R by replacing /by u;,,,., . Thus, R;(x) = 0 and

Ietm4+1

R(r) = Y bix. n)ufz), (3.7
i

where the b;(x, n) are uniformly bounded.
Finally, we note that g, () or —q,,,(f) agrees in sign with S (z)(x — t)*.

4, PROOFS OF THEOREMS | AND 2

4.1 Proof of Theorem 1. By the uniform boundedness principle, it suffices
to show the convergence for f= C"*[a, b]. Let f€ C™t¥[q, b] and x be given.
By (3.4), we have

k+m+1

A x]—fl) = Y a(x, midyfu; o x| — u(x)} -+ A[RC) 1 x] (4D

j=1

where the coefficients a,(x, n) are uniformly bounded.
In order to estimate A,[R("): x], we decompose the integral over [a, x]
and [x, 6], and apply (3.3) to obtain

ARC) : x]
= a0 K 0 [l [ ) [ S0 dr e dr
a0k [ e [t [ 0 dr dma
Interchanging the order of integration yields
RO 51 = [ sdox- 1 de < [ a0 5.0 de
[ o G0 S i+ [ 0nt) 1) S0

Since ¢, .(t) changes sign with S,(f)(x —)* and |g, ()] < M < -+
uniformly, we have

TA[RC) Xl < M

[ rn® S0 dt 1 [ g0nt) S0
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From (3.6) and (3.7) and interchanging integration, it follows that

FA[RC) : x]l << M AL[R()  x]| < M C%q Lbi(x, )] Ay x] — uix),
= (4.2)

Combining (4.1) and (4.2), we have
AL ¥ — fO = MY Al ¥ — wl, (@3)

where M’ depends only on the generalized derivatives of f and the u;.
Theorem 1 follows immediately.

4.2 Proof of Theorem 2. We can interpolate 2'f, j =0, 1,...,/ — 1l at x
by means of the system (i ,..., u;,). [ndeed, f(¢) = p, .(f) -+ Ry(t) where

Rz(t):(z.ll...ul f)/(lﬁuz)’

X X t X ot X

defines the interpolating polynomials. As was shown in [4], the coefficients

of p, (t) = Zj—zl a;(x, n) u;(t) are uniformly bounded in x and # (the bound

depends on the system (1 ,..., u;) and the derivatives to order / — 1 of f).
Thus,

L AL x] — P (0)l|x

SM Y | Auluy s X1 AR 2 X1 — 2 (0)lx

j=1

14
= MY Ay 2 x]) — DOl - | AR ¢ X] — DOk
j=1
Consequently, we only need to estimate this last term.
The form of R, is quite simple since all the interpolation takes place at x.
Indeed,

&(x) ()
us(x)  €y(x) O us(t)
1 . .
Rt) = w557 '
£1(x) -+ Eulx) : : :
w(x) Dulx) - £x) uy(x)
) Dfx) - ZHV () (D)

From this, it follows that

Ry = 6 [ &) [ tm [ Dy
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Consequently, by decomposing the integration over {a, x] and [x, b], and
interchanging the order of integration, we have

ARy X = [ ) [ r) - [ &) K1) di dr, - d

Yy

b ! Ty,
-+ J @lf(Tz)J Eilrry) ' &) Kux, t) dt dry - dr,

€x R

= An*[glf ,V],

where the kernel of 4,* is understood from the equation.

We claim that the sequence {A4,*}C ¥, (L,_;: [«, B]) where L, ,y =
o(t) Dy, ... Dy y with fundamental principal system (wj ...., w,_;) defined
by Z; = w;_,. The functions & corresponding to this system are just
& = ¢, . Thus, the function S, ;. (¢) used in the definition of (L, , : [«, 8D
Observe that the number of sign changes of S, ,_(¢)(x - £)** are the same
as the sign changes of S, (¢)(x — ) 1(—1)(x — 1) = S,(t)x — t)*(—1)
ThUS, {An*} C 'Spm(Lk——l : [O‘5 18])

We now show that the proof of Theorem 1 applies to {4,*}, L,.; and
Lyp- Let (Wy s Wig s Wipit 5eees Wir0,0q) DE the system as in Theorem 1
corresponding to L, ., and L,_; i.e., w,_,.; is defined as in (2.1) using the
weights &, corresponding to L, ,. Now,

A [w; 2 x]

— f: fl(t) Ka(x, 1) (ll Ex(ry) fx (i) [ wiT) dr, - dry dt

i
Ti-2 T

- f " Ko, 1) Re(t) di,

where

Ry(r) = ("0 71 ey ()

since wi(t)) == P'u,, (7)),j = l...., m + 1. Notice that R,(r) defines a method
of interpolating Z%u,,; ,i = 0, 1,...,/ — 1 at x by a polynomial in (u, ,..., t;).
Furthermore, the coefficients of the interpolating polynomial are uniformly
bounded. Consequently,

1Ay o x] — wi@llx = 1| Au[Rs 0 x] — Zhupes(¥)lx

.
< Al X1 — L+ MY Al 2 x]llx

=1
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where M is independent of n. By the conditions of Theorem 2,
it A, *%[w; + x] — wi(x)liy tends to zero as n — 0.
If fe C™*¥[a, b], then @'f € C™+*~[q, b] and the proof of Theorem 1 yields
| A2 x] — Z'f(x)|y >0  as n— oo,

This completes the proof of Theorem 2.
The following statement is an immediate consequence of the above proof.

COROLLARY 2. If the {A,*} defined above rurn out to have uniformly
bounded norms, then the convergence in Theorem 2 holds for functions
feC'a, bl N X.

5. PROOFs OF THEOREMS 3, 4, 5 AND 6

From (4.3) and well-known bounds on derivatives for fe C**a, b],
there holds
k+m+1
FALLS o x] — fOollx < MCU il = 1O L) Z ALy x] — ux)ix,
i=1 (5.1)

where M is a constant independent of f and n. Precisely as in [4], there are
S With || fllge << LILF"™ llze < 1 such that

” An[fn : X] '_‘Afn(x);!u > C/f’lmH"_

Theorem 3 follows immediately.

For Theorem 4, we observe that the bounds in (4.3) came from estimating
the coefficients of (3.4) and (3.7). Careful consideration of these estimates
show that derivatives of f of order greater than k only enter through bounding
(3.5). But these were precisely the determinants considered in [4].

Theorem 5 follows from Theorem 4, Eq. (4.4), and the fact that the sign
changes for 4,* correspond to those for 4, . Indeed, by Theorem 4 and the
sign properties, at least one of the sequences nfot*=11 4, *[w; : x} — w;(x)llx
does not converge to zero. The theorem follows by comparing this to (4.4).

Theorem 6 requires a lemma of Freud and Popov [3] and follows an
argument of Ditzian and Freud [2]. The result of Freud and Popov claims
that for arbitrary fe Cla, b] and 0 << h < 1, there exists ¢, € C™t*[a, b]
such that

1F (%) — $alctons < Ml fs h) (5.2)
and

1 SR < Mh™ " w, (f, ). (5.3)
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For each n, approximate f by ¢, corresponding to /i - o, . From the
triangular inequality
" An[] X] ”f(x),‘C[a,b] S ;\ An \Hf(X) ‘ﬁn.(x)i(c[(,,;»]
i ‘\ An[(}sn : X] o ¢n(x)HC[a,h]
- 'If(x) o qsn(x)”C[ﬂ,b] -

Using (5.1) on the middle term of the right side, applying (5.2), (5.3) and the
conditions of the theorem, we obtain

1AL x] — f(Oictan
g/\ 1 An ‘ MiwnP—/c(.f; Un)

kel

. : o gy ke 1 s
+ ‘M(‘\ qsn(x)\‘c[a,b] -+ h Qﬁn"H (-\)[iC[n,b]) Z H An[uj - -X] - uj(X)JwC[u.il]
J=1
-+ M4wm I 7.(/15 Un)
(; ‘3077,;+k w M4u)'m—'»k(f; Un)-
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