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INTRODUCTION

Recently, V. A. Baskakov [I] introduced a class of linear operators on
qa, b] that is more general than positive operators, and obtained various
convergence theorems of Korovkin type. The theorems in [1] are of three
types: (1) convergence of a bounded sequence of operators from his class to
the identity on a certain test set implies the convergence for allfin qa, b];
(2) convergence of a sequence of operators from his class to the lth-derivative
on the test set implies the same sort of convergence for allfE Cl'[a, b]; and
(3) theorems limiting the degree of convergence of sequences of polynomial
valued operators belonging to his class.

In the present paper, we shall combine the idea of Baskakov with the
concept of finite oscillation kernels to obtain a wider class of operators and
the corresponding theorems. To this end, we shall refer to many of the results
by M. J. Marsden and the author [4]; particularly, those results dealing with
disconjugate differential equations.

Let L }' =-c D"'}' + ""''''. aCt) Dj-I}! = 0 D== dldt be a linear differentialtn~ L....J=l ) , , ,

equation with continuous coefficients, i.e., ai E C(a, 13). We suppose that
any solution of L",Y ~= 0 has m 1 or fewer zeros in [ex, 13], i.e., Lmy is
disconjugate on [a,f3]' In such a case, there are functions ~i E C"'H-i(a, 13),
~i :> 0 on (a, 13) such that L", can be factored as

(1.1 )

where DiY = D(y/~i) and w I/t",+! /;1····· ~m' The functions
t2 ,... , ~m are only integrable on proper subintervals [a, c] of [a, 13], and the
set of functions U 1 , ... , Um defined by DjDj _1 ••• D1uj+! c= ~j+l , DI"uj+!(a) = 0
for k = 0,... ,.i-I, is called a fundamental principal system for L m on [a, 13].
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Moreover, a fundamental principal system on [ex, ,8] is unique up to multi­
plication by positive constants. In the discussion that follows, we adopt
the notation,

I ~ In, (1.2)

where (1.2) is obtained from the decomposition in (1.1). For the above
facts and a more complete discussion of disconjugate equations see Willett
[5] and the references therein.

Let L"y = 0 be a disconjugate equation on [ex,,8] with [a, b] C (ex, ,8).
We define a class of linear operators Ym(L" : [ex,,8]) on the space X to itself
by:

(i) A E Ym(L" : [lX, ,8]) implies A[f; x] = S:f(t) K(x, t) dt

(ii) for each x E (a, b), and for the function

there is a partition of [a, b] into at most In + 1 intervals [LX , ... , [nLx,

(r =~ rex)), such that Sx(t)(x - ty' is of one sign (?O or~;O) on each [i,x ,

and Sx(t)(x - tY alternates in sign on these intervals. The functions gj,
i = 1,... , k in Eq. (1.3) correspond to the decomposition of L

"
, on [ex,,8] as

described above.

The space X in the above definition may be taken as C[a, b], or, as a
Banach space of Lebesgue measurable functions on [a, b] which satisfies
(a) emfl'[a, b] C X and is dense, (b) XC U[a, b], i.e., ilfllL ~ M Ilfllx,

1

fE X and M an absolute constant, and (c) I g I ,,~ Ifl,fE X implies g EX and
g ilx ,s:; e II f Ilx where e is an absolute constant. In the first case,

K(x, t) dt = dexx(t) where exit) is of bounded variation on [a, b], and in the
latter case, K(x, t) is an [a, b] X [a, b] Lebesgue measurable function and
condition (ii) is satisfied for almost all x.

The class of V. A. Baskakov [1] is covered by taking I1l = 0, k even, and
U to be ordinary differentiation k-times which is disconjugate on the interval
[0, (0) (i.e., the weight functions gi = I).

In the sequel, if ex is not a singular point for the disconjugate equations
involved, then a = ex may be included in the definition and theorems. Further,
we shall assume k I, since the case k = ° corresponds to the class
y~, of [4].
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2. THE MAIN THEOREMS

Suppose that L m+1Y= 0 is a disconjugate equation on [(Y, (:l], [a, b] C ((Y, (:l),
with a fundamental principal system on [(Y, (:l] given by (VI"'" V"'el)' Let
Lky 0 be the disconjugate equation with fundamental principal system
(u l , ... , Uk) on [(Y, (:l] which defines the class Y"m(L" : [(Y, /3]). For j =c 1,... , III -+ I,
we define U"+j as

uk+iCt) = ~I(t)r~2(TI) r
T

, ... f'-' ~,,(T;.. I) fk-ll'j(T,J dT;'" dTI , (2.1)
a "'(:( Cl'.'X

where the ~i are as in (1.3). Clearly, fiJ"Uj Vj .

THEOREM 1. Suppose that {An} C //;"(L,, : [(Y, /3]) on X. Let L"'iIY 0
be discOJ~jugateon [(Y, /3], and suppose (u l , .... UI." U"+1 '00" 11"+""H) are as above.
Then, the conditions Ii AI/ .Ix M < 00, and II An[ui : x] - ui(x)llx -->- 0
as n -~ CfJ for i ~ 1, 2, ... , mj- k, I, i1nply An[f: x] ". f(x):lx-" 0 as
n -+ CfJ for each f E X.

If the operators L mH and L" correspond to ordinary differentiation (the
weights ti in (1.3) and (2.1) taken to be identically 1), then we obtain the
following.

COROLLARY 1. If{A n} C .'I',,,(D": [0, CfJ» on X, then An . M < lex:,
and II An[t i : x] - Xi lix -->- 0 as n -->- CfJ for j = 0, 1'00" III + k, imply
I; An[f: x] - f(x),!x -->- 0 for allf EX.

For the class .'I',n(L" : [(Y, /3]), we can give an analogous theorem concerning
convergence to certain "generalized" derivatives given by Eq. (1.2).

THEOREM 2. Let {An} C Y;n(L" : [(Y, (:l]) on X, and (u l '00', 11k. Uk+1 '00" ulc1 .mn)
be as above. Then the convergence

i == l,oo.,m +k!·l,

I < k, implies II An[f: x] - fiJj(x)l,x - .. Ofor allfE X with ::tleen/fE era, b].

In the case of polynomial valued operators of class .'I',,,(L,. : [(Y, 13]) on X, we
can give an estimate on the degree of convergence. Let P n denote the class
of polynomials of degree not exceeding n.

THEOREM 3. Suppose that (i) {ArJ C .'I',,,(L,, : [(Y,J3]) on X, (ii) AnfE P n
for each fE X, and (iii) L"'H and (u l , ... , U I•• , UkH , ... , UI.>flllH) are as in
Theorem 1. Then at least one of the sequences

n",l. II An[uj : x] - uj(x)lix ,

does not converge to zero.

j = l, ... ,m l·k +- 1,
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As in [4], a more careful look at the clustering nature of the sign change
points of Sx(t)(x - t)" yields a stronger result. Let tl,x,n " .. , fr,x,n be the
endpoints of the intervals Il,x.n ,... , Ir+l,x,n contained in the interior of
[a, b]. Let jo represent the essential number of sign changes for the sequence
{An}, i.e., jo is the smallest number jo for which there exists 0 > 0 and no
such that for each x (or x a.e.), and each n :?: no , at most jo of the points
tu,n lie in any interval of length o.

THEOREM 4. If, in addition to the assumptions of Theorem 3, {An} has jo
essential sign changes, then at least one ofthe sequences

.i = I,... , m k + I,

does not converge to zero.

A quantitative result corresponding to the convergence in Theorem 2
can also be obtained.

THEOREM 5. Suppose that (i) {An}C'C/',n(Lk : [ex,,8]) on X, (ii) AnfEPn
for each f E X, and (iii) L m+1 and (ul , ... , U/c , Uk+1 ,... , Uk+m+1) are as above. If
A n has jo essential sign changes, then at least one of the sequences

j = I, ... , m + k + 1,

I < k, does not converge to zero.

Finally, as a corollary to the proof of Theorem I, we can obtain a quanti­
tative statement in the other direction for a sequence of operators
{An} C !/m(L Ic : [ex,,8]) on C[a, b].

THEOREM 6. Let

An llcra,b] ~ M I <
Theorem I. If

fE C[a, b], {An} C /f,,,(L k : [ex,,8]) on C[a, b],

+00, and L m+1 and (ul , ... , Uk' Uk+1 ,... , UIc+m+l) as in

i == I, ... , k + m + 1, an ---+ 0, then

where Wm+k(j, an) is the (m + k)th modulus of smoothness.
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3. THE INTERPOLATING POLYNOMIALS

Let fE Cm+k[a, b]. As was established in [4], we can interpolate such a
function by "polynomials" comprised of elements from a fundamental
principal system. In this section, we shall set up the interpolating system
and obtain boundedness of its coefficients.

Let t, t i .,.", i =~ 1, ... , r. r m. be the endpoints of the intervals
Il.l',n , ... , IrH".,n interior to [a, b]. We interpolate [i;ki at the points tl , ... , t,
using the fundamental principal system (VI"'" Vm+l) of the disconjugate
equation LmHy 0 on [a, f3]. Indeed, let

J(t) == ('L\ ... v, 9kf)' /('V1.,. l'r) = (C)j(D).
tl· .. t r t tl,,·tT

(3.1)

(see [4, Eq. 3.6]) where the brackets represents the determinant of the matrix
whose (i,i)-entry is the ith function evaluated at thejth point.

Note that J(t) may be written in the form

where

A

J(t) = (- B (3.2)

B'
B == [f(x) [i;lf(x) ... [i;k If(x) ]

and B' = [[i;i-1Uk+i(X)] (j 1,... , k, i ~~ I, ..., r).
Integrating J(t) against the weights ~i , we obtain

(3.3)

where C == [C': V/J, UtCt) =~ [ul(t) ... u,,(t) Uk+l(t) ... uic+r(t)f(t)] and
VI = [VI(t) ... V,.(t) [i;'j(t)].

Observe that R(t) =~ f(t) - Px,n(t), where

k+m+l

Px,n(t) ~~ I a;(x, n) u;(t)
j~l

(3.4)
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and that Px.n(t) interpolates f and its generalized derivatives of order up to
k - I at x, i.e" !!ZiPx,n(x) = !!Zif(x), j =~ 0, 1, .. " k - 1.

We shall need the coefficients a/x, n) to be uniformly bounded, Now,

where ( )i denotes that the jth row has been removed. Using the triangular
nature of A and an inductive procedure, we can write aj(x, n) as a linear
combination of determinants of the form

(
I ')/' A I 0 )

fLJiUtCXY! C' (-~I-i-~-

where E0iUtCX) = [E0iUk+l(X) ... EZiUN,.(X) EZj(x)], 0 < i '.c;; k - 1, which in
turn are linear combinations of

(VI ", ..., 1')'-1 EZ",'/' v' .. ' t' )/(V ... v )hI r 'lr

f l f j - l f j fj~l'" f r f l .. ' I r •
(3,5)

The last determinants are uniformly bounded by Lemma 3.2 of [4]. The
coefficients in the above linear combinations involve products (in various
combinations) of the function ~i(X), l/~;(x), EZj(x), and EZiUj(X), all of which
are uniformly bounded on the interval [a, b].

The function J(t) also can be written as

J(t) = [(VI'" Vr EZl1)/(Vl'" Vr Vr +l)] [(VI'" Dr Cr';l)' /(Vl ." Vr )]

fl· .. t r f fl'''f/, f fl"'f r t tl"'lr

According to Lemma 3.2 of [4], [gx,r.(f)[ is bounded uniformly in f, x, n.
Further, we note that

where Bl and Cl are found from Band C, respectively, by replacing f by
UHr+l . Thus,

(3.6)
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is found from R by replacingfby U"'+r+1 . Thus, RI(x) = 0 and

Ict·m-+l

RI(t) = I bi(x. n) uit),
j~1

(3.7)

where the bix, n) are uniformly bounded.
Finally, we note that qx.n(t) or --qx,n(t) agrees in sign with SxCt)(x - ty.

4. PROOFS OF THEOREMS I AND 2

4.1 Proof of Theorem I. By the uniform boundedness principle, it suffices
to show the convergence forfE: Cmt!-[a, b]. LetfE: Crnt"'[a, b] and x be given.
By (3.4), we have

ktmti

AnLl: xl - f(x) = I aix, n){An[uj : xl- Uj(X)} + An[RO : xl, (4.1)
j~l

where the coefficients aj(x, n) are uniformly bounded.
In order to estimate An[RO: x], we decompose the integral over [a, x]

and [x, b], and apply (3.3) to obtain

An[R(·) : x]

= r ;I(t) Kn(x, t)(-l)'"r ;2h) f"' ... ;",h'-l) r
x

J(T",) dT", ... dT1 dt
at'"' 71 ·'7/.:_}

f ;JCt) Kn(x, t) f ;2(T1) .r' ... ;"{T,,,-I) fH J(T",) dT", ... dTI dt.

Interchanging the order of integration yields

J
x .b

An[RO ; x] = a J(t) Sx(t)(-Iy dt -+- t J(t) Sit) dt

= rgx.n(t) qx.n(t) Sit)( -1)1' dt + Cgx,n(t) qx.n(t) Sit) dt.
~a ·x

Since qx.n(t) changes sign with Sit)(x - ty and I gx.n(t)! ~ M < +00
uniformly, we have

! A[R(') : xl! ~ M Ir qu(t) Sx(t)(-l)'" dt + f qx.n(t) Sx(t) dt I·
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From (3.6) and (3.7) and interchanging integration, it follows that
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k+rn-'-l

i A[R(') : x]l :( M i An[R 10 : x]1 :( M L I bj(x, 11)li A,,[Uj : x] - U;(x) , .
j"ool (4.2)

Combining (4.1) and (4.2), we have

k+m+l

II An[f: x] - f(x)lx M' L A,,[uj: x] - Uj(x)i!x, (4.3)
1",1

where M' depends only on the generalized derivatives of f and the lI j •

Theorem 1 follows immediately.

4.2 Proof of Theorem 2. We can interpolate !i!jj, j = 0, I, ... , 1- I at x
by means of the system (u1 , ... , Uk)' Indeed,j(t) = Pr,,,(t) + R2(t) where

Ro(t) = (U1 ... Ul f)/(u1 '" Ul)
" X"·X t. x .. ·x'

defines the interpolating polynomials. As was shown in [4], the coefficients
of P,<.rJt) = L~~1 aj(x, 11) u;(t) are uniformly bounded in x and n (the bound
depends on the system (u1 , ... , u/) and the derivatives to order 1 - I off).

Thus,

i A,,[f: x] - iZ/f(x)llx
1

:( M L Ii A,,[uj : x]lx + II A,,[R20 : x] - ,CZ"f(x)llx
j~1

1

c=, M I II An[Uj : x] - !i!lu;(x)ilx -+- Ii A,,[Rk) : x] - iZ:f(xll:x.
j~1

Consequently, we only need to estimate this last term.
The form of R2 is quite simple since all the interpolation takes place at x.

Indeed,

gix) 0 u1(t)
u2(x) g2(X) u2(t)

1
R2(t) = gl(X) ... g/(x)

Ul(X) D1u/(x) g/(x) Ul(X)
f(x) Dd(x) f£l-lf(x) f(t)

From this, it follows that
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Consequently, by decomposing the integration over [a, x] and [x, b], and
interchanging the order of integration, we have

A n[R2 : x] = (X !:0 lfh)(-I)1 rUTI-I) ... r' ~l(t)Kn{x, t) dtdTI ... (iT I
oJ a ~ T l '" 71

-j- r!:iJlfh) (' ~1(TI 1) ... I,T l

~l(t) Kn(x, t) dt dTl ... ciT I

= An*[fY'l: X],

where the kernel of An * is understood from the equation.
We claim that the sequence {An *} C '/',lI(L k - l : [ex, {j]) where L k lY ••.~

wet) D k ••• DI+1y with fundamental principal system (WI"'" Wk - l) defined
by !?iJIUj = Wj_I' The functions gj corresponding to this system are just
gj == ~j tl . Thus, the function SJ'.I, let) used in the definition of .CJ:",(L"_1 : [ex, ,8])
is SJ..k-l(t)== ( __ 1)1 S'(t)' a < t < X, and S,r."-l(t) = Sit), x < t < b.
Observe that the number of sign changes of S,.,k-l(t)(X- t)"-l are the same
as the sign changes of Sx(t)(x - t)"-l(--I)I(X - ty == SxCt)(x - t)"( -1)1
Thus, {An *} C .':1'",,([1. __ 1 : [ex, ,8]).

We now show that the proof of Theorem I applies to {An *}, L"'+l and
L k_l • Let (WI'"'' Wf;l , Wk-1-'-1 ,... , Wk-- I--mil ) be the system as in Theorem 1
corresponding to L", /1 and L k- 1 i.e., Wk __ l+j is defined as in (2.1) using the
weights gi corresponding to L k I . Now,

An*[Wj : x]

= r~l(t) Kn{x, t) r~2(Tl) ... (X ~l(Tl-l) r WiTl) dTl ... dTl dt
a ' t 0- T/'_2 • Tf -1

= rKn(x, t) R3(t) dt,
a,

where

R3(t) == (Ul ... Ul UI.-'-j)/(U~ . Ul) ,
X"'X t .'''·X

since W;(TI) = !?iJIUI+lTiki = 1, , m + I. Notice that R3(t) defines a method
of interpolating !?iJiUl+j , i = 0, 1, , I -- I at x by a polynomial in (Ul ,... , Ul)'
Furthermore, the coefficients of the interpolating polynomial are uniformly
bounded. Consequently,

I

:(, Ii An[ul+j : x] - Ei1Ul+;(X)!i + M L An[uj: x]lix,
j~l
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where M is independent of n. By the conditions of Theorem 2,

ii An*[Wj : x] - wj(x)!'x tends to zero as n --+ 00.
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IffE Cm+/.[a, b], then ££If E CmH-1[a, b] and the proof of Theorem I yields

I! All *[££If: x] ~ ££l[(x)flx --+ 0 as n --+ 00.

This completes the proof of Theorem 2.
The following statement is an immediate consequence of the above proof.

COROLLARY 2. If the {An *} defined above turn out to have uniformly
bounded norms. then the convergence in Theorem 2 holds for functions
fE C'[a. b] (] X.

5. PROOFS OF THEOREMS 3. 4, 5 AND 6

From (4.3) and well-known bounds on derivatives for fEC'" A[a. b],
there holds

k+m--:-l

11 An[f: x]- f(x)!lx <:::; Melf'lp, +- Iffi llltk1 u) I
j~l

An[uj : x] - u'(x)!lx,
(5.1)

where M is a constant independent off and 11. Precisely as in [4], there are
fn with Ilfn IlL''' :s;; I, !If~m+k) IlL''' :s;; I such that

II AnLfn : x] - fnCx)ilv ): C/nm+ k
.

Theorem 3 follows immediately.
For Theorem 4, we observe that the bounds in (4.3) came from estimating

the coefficients of (3.4) and (3.7). Careful consideration of these estimates
show that derivatives offof order greater than k only enter through bounding
(3.5). But these were precisely the determinants considered in [4].

Theorem 5 follows from Theorem 4, Eq. (4.4), and the fact that the sign
changes for An* correspond to those for An . Indeed, by Theorem 4 and the
sign properties, at least one of the sequences njo+k-1!1 An*[Wj : x] -- w'(x)llx
does not converge to zero. The theorem follows by comparing this to (4.4).

Theorem 6 requires a lemma of Freud and Popov [3] and follows an
argument of Ditzian and Freud [2]. The result of Freud and Popov claims
that for arbitrary f E C[a, b] and 0 < h < I, there exists cPh E CmH[a, b]
such that

(5.2)
and

(5.3)
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For each n, approximate f by cPn corresponding to Iz c_ an' From the
triangular inequality

cPn(x)iiclo ,h]

cPn(x)lic[a.l;]

An[f: x] --f(xYlcla.bl I, An ilif(x)
An[cPn : x]

L Jlf(x)-- cPr,(X)]!cla,b] .

Using (5.1) on the middle term of the right side, applying (5.2), (5.3) and the
conditions of the theorem, we obtain

In -:li:-!1

rI-(m+k)( _)1' )
'{-'n .X "Cra,b]

M m+k
~an .
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